The Space Shuttle 10 years on

Ten years ago, on 8 July 2011 Atlantis took off for the final mission of a Space Shuttle, bringing to close a programme which had lasted nearly 40 years  and had cost the equivalent of $220 billion in 2021 dollars. In this post I’ll review this fascinating and unique piece of technology.

Space shuttle Atlantis (STS-135) touches down at NASA's Kennedy Space Center Shuttle Landing Facility (SLF), completing its 13-day mission to the International Space Station (ISS) and the final flight of the Space Shuttle Program, early Thursday morning, July 21, 2011, in Cape Canaveral, Fla. Overall, Atlantis spent 307 days in space and traveled nearly 126 million miles during its 33 flights. Atlantis, the fourth orbiter built, launched on its first mission on Oct. 3, 1985. Photo Credit: (NASA/Bill Ingalls)

The landing of Atlantis on 21 July 2011, which brought the Space Shuttle programme to a close – Image credit NASA.

Development of the Space Shuttle in the 1970’s

Prior to the Space Shuttle, all astronauts were launched into space in a small capsule which was stacked on top of a tower which consisted of a number of large rockets. It took months to build each launcher and space capsule, and unlike the SpaceX rockets used today, there was no re-use of any the technology.  This meant access to space was restricted to a very small number of people.

In the early 1970’s, as the Apollo programme to put a human on the Moon was drawing to a close, the next stage of manned space exploration was logically seen as widening it out so that many more people would be able to venture into space at a much lower cost. At the time many people thought that, with continual improvements in technology, in the 2020’s travelling into space might become commonplace  just like flying in a plane.

The Space Shuttle was announced by president Richard Nixon in 1972 as the first step in this process, saying it would be

 “…designed to to help transform the space frontier of the 1970s into familiar territory easily accessible to human endeavor in the 1980s and 1990s … It will revolutionize the transportation into space by routinizing it.” (Gehrman et al 2003:22)

It was planned that there would  be an initial fleet of four Space Shuttles. Each would be launched like a traditional rocket into Earth orbit and after it had completed its mission would land like a conventional airplane on a runway. After it had landed, the Shuttle would be refueled and serviced and could be launched again within 10 days. In 1972, when Nixon announced the approval of the Shuttle programme, NASA expected that they would be launching 50 Shuttle missions a year by the time the it was fully operational.  They estimated that it would cost $5.15 billion (equivalent to $33 billion in 2021 dollars) to design, develop and build the Shuttle fleet and each launch would cost $7.7 million ($55  million in 2021 dollars). At that time it was expected that the Shuttle would have a lifetime of 10-15 years and in the early 1990s it would be replaced by a new generation of more advanced reusable spacecraft.

Like  many large programmes, the development of the Space Shuttle was more complex and took much longer than expected.  By 1979 it was already three years late, with the date of the first planned launch having slipped from 1978 to 1981, and it was the equivalent of $6 billion (in 2021 dollars) over budget.  President Jimmy Carter wanted to ensure that the programme was still worth continuing with and subjected it to an intensive review. The decision was taken to continue – a key factor being that it was needed to launch military surveillance satellites.

Space Shuttle missions 1981- 2011

The Space Shuttle was first launched into Earth orbit in April 1981 and was the first, and so far the only, manned spacecraft which could take off like a rocket from a launch pad, go into orbit and then glide back to Earth to land like a plane on a runway. A total of 5 shuttles were built and between them they flew a total of 135 times between 1981 and 2011.  Sadly it never achieved anywhere near the frequency of flights originally planned. Over its 30 year lifetime there were, on average, only 4.5 Shuttle flights per year.


The first launch of the space shuttle on April 12 1981- Image from NASA

The much lower number of flights per year was for a number of reasons. One was that the minimum time interval between a Shuttle landing and it being ready for its next launch was much longer than the ten days originally planned. The three main engines needed to be removed from the Shuttle and carefully inspected before each flight for signs of any damage. Each Shuttle was covered by 30,000 protective insulating tiles to protect the spacecraft from damage due to the high temperatures when it re-entered the Earth’s atmosphere. Each of these tiles needed to be individually checked for damage and replaced if necessary. This was a time consuming task. Each tile was was designed to fit a particular place on the Shuttle and so was a slightly different shape from the others.

But the biggest reason for the lower frequency of flights were the two fatal accidents in 1986 and 2003, both of which not only stopped all Shuttle flights for a period of time, but lead to great reduction in the frequency of flights when they eventually resumed.

In the first of these, on 28 January 1986, the Space Shuttle Challenger broke apart 73 seconds after take off, killing all the crew.

Challenger Breakup

Space Shuttle Challenger – 15 seconds before its destruction – Image credit NASA

Space Shuttle flights were suspended for nearly three years, while a commission under the chairmanship of former Secretary of State Williams Rogers investigated the cause of the accident and NASA put into place its recommendations.

After the accident one of the observations was that because NASA wanted to have as many Shuttle flights as possible, they had cut corners when it came to checking that a Shuttle was safe to launch. When Shuttle flights resumed in late 1988 there were fewer launches per year with a larger gap between them, to allow for additional safety checks. Before the accident, the Shuttle was intended to be the main vehicle to get NASA’s spacecraft into orbit, but after the accident NASA moved away from relying mainly on the Shuttle and went back to traditional non-reusable launchers as an alternative, which turned out to be a cheaper way of getting satellites into orbit. Prior to the accident, the Shuttle generated revenue, because private companies could pay NASA to launch their satellites on the Shuttle – indeed many of the early Shuttle flights carried such satellites. In August 1986, President Reagan made an announcement that the Shuttle would no longer carry any commercial satellites in order to focus on scientific and military objectives only.

Shuttle reagan

Although this might sound like good news for science, the problem was that the Shuttle was no longer generating any money, which in turn weakened the economic case for ongoing investment in it.

The second accident occurred on 1 February 2003 when the Space Shuttle Columbia broke apart during its re-entry into the Earth’s atmosphere.  The Columbia Accident Investigation Board (CAIB) was set up to investigate the cause of the accident and found it to be the result of damage to a wing of the Shuttle caused by foam debris hitting it at very high speed shortly after launch.  The CAIB found that there had been many similar “foam strikes” which had caused damage to the Shuttle over the years. However, because there had never been a serious accident NASA had become complacent and ignored the warnings which had previously been given by scientists from within the organisation.

The STS-107 crew includes, from the left, Mission Specialist David Brown, Commander Rick Husband, Mission Specialists Laurel Clark, Kalpana Chawla and Michael Anderson, Pilot William McCool and Payload Specialist Ilan Ramon. (NASA photo)

The Space Shuttle Columbia crew tragically killed in February 2003 – Image credit NASA

After the second accident, Space Shuttle flights were suspended for two and half years. When they did resume, only 20 more shuttle flights took place and all but one of these missions used the Shuttle to carry components to the International Space Station (ISS) which was being constructed and which NASA were committed to finishing. Flying to the ISS had the advantage that if the Shuttle were damaged on take off and couldn’t safely return to Earth then the crew could stay on the ISS until they could return to Earth on another spacecraft.

A remarkable machine

The Space Shuttle was one of the most complex machines ever built. Each Shuttle was assembled from over 2.5 million parts and had 370 km of wire in its electrical circuits. Weighing 4.5 millions pounds (2,000 tonnes) at launch, it could take a crew of seven astronauts up to an orbital velocity of 28,500 km/h, which is 25 times the speed of sound, in just over 8 minutes. The Shuttle could carry into orbit a payload the size of a small bus and weighing up to 26 tonnes (Gehrman et al 2003:14).

Although it never achieved its original objective of frequent flights into space, over its 30 year lifetime the shuttle launched numerous satellites, interplanetary probes (including the Galileo mission to Jupiter and its moons), and the Hubble Space Telescope.

Shuttle astronauts also conducted numerous science experiments in orbit, such as studying the effects of zero gravity on plant and animal life. It would not have been possible to construct the ISS without the shuttle, as it played a key role in ferrying components, supplies and crew there.


The ISS – image credit NASA

Costs of the programme.

One of the key failures of the programme is that both the development of the Shuttle and each Shuttle mission cost far more than the original estimates. According to NASA (2012), the total cost of the Space Shuttle from 1972 until the end of the programme in 2011 was $113.7 billion. However, this figure is misleading because it is not adjusted for inflation. If we do this, the cost (in 2021 dollars) is around $220 billion. This compares with a cost of $175 billion in today’s money of the Apollo programme to put a man on the Moon (NASA 2014).

It we divide $220 billion by the number of missions (135), The average cost of each Shuttle missiion works out at $1.6 billion.  This is a very high figure and it would perhaps be fairer to ignore the upfront design and build costs and use the figure of how much it cost to launch a single Shuttle mission.  In NASA (2011) the figure given is around $500 million in today’s money. This compares with a figure of only $60 million to launch a Russian Soyuz spacecraft (Wade 2016)

The final mission

The final mission had a crew of four and the purpose of the mission was to deliver supplies and equipment to the ISS. The astronauts spent seven days aboard the ISS, joining the six astronauts who were already there.

STS-135 meal

The four members of the final shuttle crew having a meal with the six astronauts already aboard the space station – Image credit  NASA

Inside the ISS the Space Shuttle crew presented the ISS crew with a US flag, which was then mounted on the hatch leading to Atlantis.  This particular flag is special because it was flown on the first Shuttle mission. It remained on the ISS until it was retrieved by the astronauts launched aboard the SpaceX  Dragon capsule in 2020.

Post Shuttle Spaceflight

From 2011 to 2020,  the the only way astronauts could get to and from the ISS was by the Russian Soyuz spacecraft.  Soyuz was first flown in 1967 and its design has changed little since then. Like Apollo, it is a single use spacecraft. NASA paid $70 million per seat for each astronaut who flew in the Soyuz spacecraft (Wall 2013), which enabled the Russian space agency to make a significant profit.

However, in 2020 American was once again able to send astronauts to ISS, when on  May 31, a SpaceX’s Dragon 2  NASA  with astronauts Bob Behnken and Doug Hurley successfully docked with the station.


NASA astronauts Doug Hurley and Bob Behnken who in 2020 were the first astronauts since July 2011 to go into orbit on a American spacecraft – image credit NASA.

Since then there have been a further two Dragon 2 missions to the ISS. with another one planned for later this year. Space X are also offering flights to fee paying customers who are able to afford the enormous costs of private orbit spaceflight. In the near future Boeing and Blue Origin (a company started by Amazon founder Jeff Bezos) will also offer orbital spaceflight

NASA are also developing a spacecraft which will be able to take a crew to beyond low Earth orbit. I will write about this spacecraft, which is called Orion, in a future post.

Shuttle orion

Further reading

I hope you have enjoyed this post. While researching it I found the information in the Columbia Accident Investigation Board report a useful source. It gives a lot more background to the Space Shuttle programme than I could possible mention in such a short article. If you want to view the report I have created a references page on my website where the it can be viewed or downloaded. To do this click here.


Gehrman, H.W., Barry,J. L., Deal, D. W., Hallock, J. N., Hess, K. W., Hubbard, G.S, Logsdon, J. M., Osberon, Ride, S. K., Tetrault, R. E., Turcotte, S. A., Wallace, S.B, Widnall, S. E. (2003) Columbia Accident Investigation Board -Report Volume I, Available at: (Accessed: 30 June 2021).

NASA (2011) How much does it cost to launch a Space Shuttle?, Available at: (Accessed: 30 June 2021)).

NASA (2012) Space Shuttle era facts, Available at: 30 June 2021).

NASA (2014) Project Apollo: A Retrospective Analysis, Available at: (30 June 2021).

Wade, M. (2016) Cost, Price, and the Whole Darn Thing, Available at: (30 June 2021)).

Wall, M (2013) NASA to pay $70 Million a seat to fly astronauts on Russian spacecraft,Available at: June 2021)).

2 thoughts on “The Space Shuttle 10 years on”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.